NO-Induced Activation Mechanism of the Heme-Regulated eIF2 Kinase
详细信息    查看全文
文摘
The heme-regulated eukaryotic initiation factor 2 (eIF2) kinase (HRI), which is found primarily in reticulocytes, contains an N-terminal heme-binding domain (NT-HBD). Binding of NO to the heme iron of the NT-HBD of HRI activates its eIF2 kinase activity, thus inhibiting the initiation of translation in reticulocyte lysate. The EPR spectrum of the NO-bound NT-HBD showed several derivative-shaped lines around g = 2.00, which is one of the well-documented signature patterns of a six-coordinate NO complex with histidine as the axial ligand. This is in sharp contrast to that of another prototypical NO-sensor protein, soluble guanylate cyclase (sGC), in which the NO binding to the heme iron disrupts the iron-histidyl bond forming a five-coordinate NO. The NO-mediated activation of HRI is, therefore, not triggered by the cleavage of the iron-histidyl bond. As evidenced by the resonance Raman spectra, two inactive forms of HRI, the ferrous ligand-unbound and the CO-bound states of the NT-HBD, contain a six-coordinate complex as found for the NO complex, indicating that the replacement of the sixth ligand of the heme iron is not sufficient to trigger the activation of HRI. Because the configuration of liganded NO is different from that of liganded CO, we propose that specific interactions between liganded NO and surrounding amino acid residues, which would not be formed in the CO complex, are responsible for the NO-induced activation of HRI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700