Structure and Dynamics of Octamethyl-POSS Nanoparticles
详细信息    查看全文
文摘
Polyoligosilsesquioxanes (POSS) are a large family of Si鈥揙 cage molecules that have diameters of 1鈥? nm and can be viewed as perfectly monodisperse silica nanoparticles. POSS can be synthesized with a wide variety of functional ligands attached to their surfaces. Here we report the results of a comprehensive study of the crystal structure and ligand dynamics of one of the simplest POSS nanoparticles, octamethyl-POSS or Si8O12(CH3)8, where the central Si8O12 cage is surrounded by eight methyl ligands. Neutron powder diffraction data highlight the presence of strongly temperature-dependent methyl group rotational dynamics. Vibrational spectra were measured using Raman and inelastic neutron scattering techniques, and the results of the measurements were compared with the predictions of density functional theory calculations. In particular, the inelastic neutron scattering spectra show the fundamental and first overtone transitions of the methyl torsional vibrations; these transitions are forbidden in both Raman and infrared spectroscopy for the molecule with its ideal octahedral symmetry. The energies of these transitions are used to determine the height of the torsional energy barrier. Direct measurements of the methyl group dynamics using quasielastic incoherent neutron scattering provide the hydrogen atom jump distance and the activation energy for rotation of the methyl groups. Together these results provide a detailed picture of the structure and ligand dynamics of this POSS molecule.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700