Multiple Core and Vibronic Coupling Effects in Attosecond Stimulated X-Ray Raman Spectroscopy
详细信息    查看全文
文摘
Attosecond Stimulated X-ray Raman Spectroscopy (SXRS) is a promising technique for investigating molecular electronic structure and photochemical processes with high spatial and temporal resolution. We present a theoretical study of SXRS from multiple core excitation sites of the same element. Two issues are addressed: interference between pathways contributing the signals from different sites and how nuclear vibrations influence the signals. Taking furan as a model system, which contains two types of carbons, C and C, we performed time-dependent density functional theory calculations and computed the SXRS signals with two pulses tuned at the carbon K-edge. Our simulations demonstrate that the SXRS signal from the C and C sites are nonadditive, owing to the significant mixed contributions (C 1s excitations by the pump pulse followed by C 1s excitations by the probe, or vice verse). Harmonic vibrations linearly coupled to the electronic transitions are incorporated using the cumulant expansion. The nuclei act as a bath for electronic transitions which accelerate the decay of the time-domain signal. The frequency-domain spectrum is modified by a small red shift, and high-resolution fine-structure features are introduced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700