Different Properties of the Native and Reconstituted Heterotrimeric G Protein Transducin
详细信息    查看全文
文摘
Visual signal transduction serves as one of the best understood G protein-coupled receptor signaling systems. Signaling is initiated when a photon strikes rhodopsin (Rho) causing a conformational change leading to productive interaction of this G protein-coupled receptor with the heterotrimeric G protein, transducin (Gt). Here we describe a new method for Gt purification from native bovine rod photoreceptor membranes without subunit dissociation caused by exposure to photoactivated rhodopsin (Rho*). Native electrophoresis followed by immunoblotting revealed that Gt purified by this method formed more stable heterotrimers and interacted more efficiently with membranes containing Rho* or its target, phosphodiesterase 6, than did Gt purified by a traditional method involving subunit dissociation and reconstitution in solution without membranes. Because these differences could result from selective extraction, we characterized the type and amount of posttranslational modifications on both purified native and reconstituted Gt preparations. Similar N-terminal acylation of the Gtα subunit was observed for both proteins as was farnesylation and methylation of the terminal Gtγ subunit Cys residue. However, hydrogen/deuterium exchange experiments revealed less incorporation of deuterium into the Gtα and Gtβ subunits of native Gt as compared to reconstituted Gt. These findings may indicate differences in conformation and heterotrimer complex formation between the two preparations or altered stability of the reconstituted Gt that assembles differently than the native protein. Therefore, Gt extracted and purified without subunit dissociation appears to be more appropriate for future studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700