All-Atom Force Field for the Prediction of Vapor−Liquid Equilibria and Interfacial Properties of HFA134a
详细信息    查看全文
文摘
A new all-atom force field capable of accurately predicting the bulk and interfacial properties of 1,1,1,2-tetrafluoroethane (HFA134a) is reported. Parameterization of several force fields with different initial charge configurations from ab initio calculations was performed using the histogram reweighting method and Monte Carlo simulations in the grand canonical ensemble. The 12-6 Lennard-Jones well depth and diameter for the different HFA134a models were determined by fitting the simulation results to pure-component vapor-equilibrium data. Initial screening of the force fields was achieved by comparing the calculated and experimental bulk properties. The surface tension of pure HFA134a served as an additional screening property to help discriminate an optimum model. The proposed model reproduces the experimental saturated liquid and vapor densities, and the vapor pressure for HFA134a within average errors of 0.7%, 4.4%, and 3.1%, respectively. Critical density, temperature, vapor pressure, normal boiling point, and heat of vaporization at 298 K are also in good agreement with experimental data with errors of 0.2%, 0.1%, 6.2%, 0%, 2.2%, respectively. The calculated surface tension is found to be within the experimental range of 7.7−8.1 mN·m−1. The dipole moment of the different models was found to significantly affect the prediction of the vapor pressure and surface tension. The ability of the HFA134a models in predicting the interfacial tension against water is also discussed. The results presented here are relevant in the development of technologies where the more environmentally friendly HFA134a is utilized as a substitute to the ozone depleting chlorofluorocarbon propellants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700