Revealing the Interface in Polymer Nanocomposites
详细信息    查看全文
文摘
The morphological characterization of polymer nanocomposites over multiple length scales is a fundamental challenge. Here, we report a technique for high-throughput monitoring of interface and dispersion in polymer nanocomposites based on Förster resonance energy transfer (FRET). Nanofibrillated cellulose (NFC), fluorescently labeled with 5-(4,6-dichlorotriazinyl)-aminofluorescein (FL) and dispersed into polyethylene (PE) doped with Coumarin 30 (C30), is used as a model system to assess the ability of FRET to evaluate the effect of processing on NFC dispersion in PE. The level of energy transfer and its standard deviation, measured by fluorescence spectroscopy and laser scanning confocal microscopy (LSCM), are exploited to monitor the extent of interface formation and composite homogeneity, respectively. FRET algorithms are used to generate color-coded images for a real-space observation of energy transfer efficiency. These images reveal interface formation at a nanoscale while probing a macroscale area that is large enough to be representative of the entire sample. The unique ability of this technique to simultaneously provide orientation/spatial information at a macroscale and nanoscale features, encoded in the FRET signal, provides a new powerful tool for structure−property-processing investigation in polymer nanocomposites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700