Striking a Compromise: Polar Functional Group Tolerance versus Insertion Barrier Height for Olefin Polymerization Catalysts
详细信息    查看全文
文摘
The coordination鈥搃nsertion random copolymerization of polar and nonpolar olefins holds great potential for the design of new polymers with targeted properties. However, examples of catalysts capable of such polymerization still remain scarce, the majority of which are based on PdII and some also on NiII. So far, the apparent superiority of PdII has not been rationalized. In this work, the catalytic potential of a broad range of transition metals is assessed by investigating their polar functional group tolerance and insertion barrier heights for realistic and comparable complexes. Multivariate regression models suggest that the 蟺-back-donation ability of the metal plays an important role in both the polar functional group tolerance and the insertion barrier height. Specifically, the polar functional group tolerance and insertion barrier height were found to correlate positively, indicating that a compromise must be struck. PdII seems to strike this balance optimally, thus explaining its prominent position as a transition-metal catalyst for copolymerization of polar with nonpolar olefins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700