Plasmon-Induced Photoluminescence Immunoassay for Tuberculosis Monitoring Using Gold-Nanoparticle-Decorated Graphene
详细信息    查看全文
文摘
Metal-nanoparticle-functionalized graphene, in particular, graphene sheets containing Au nanoparticles (Au NPs), have generated considerable interest because of their unique optical and electrical characteristics. In this study, we successfully produced graphene sheets decorated with Au NPs (AuGrp) using phytochemicals as reducing agents. During this reaction, Au ions intercalated into the layered graphene flakes and were then reduced into NPs, exfoliating the graphene sheets. The physicochemical properties of the AuGrp nanocomposites were characterized, and the exfoliation process was investigated using a molecular dynamics simulation of Au NPs between graphene sheets. Our proposed technique is advantageous because the phytochemicals are mild reducing agents that preserve the graphene structure during exfoliation and NP decoration. The dispersity of the NPs on the graphene sheets was drastically improved due to the use of metal-ion intercalation. Moreover, the electrical conductivity was 6鈥?0 times higher than that of bare graphene and reduced graphene oxide. Using antibody (Ab) modified AuGrp sheets and quantum dots, a plasmonic-induced photoluminescence immunoassay of tuberculosis (TB) antigen (aG) CFP-10 was demonstrated for a potential application of these materials. The enhancement of photoluminescence (PL) response was monitored depending on the various TB aG concentrations from 5.1 pg/mL to 51 渭g/mL, and the detection limit for CFP-10 was 4.5 pg/mL. Furthermore, the selectivity was demonstrated with Ag85 as the other TB aG, and PL enhancement was not observed in this case. Therefore, AuGrp-based immunoassay showed the potential for biosensor application.

Keywords:

Au-decorated graphene; mild reduction conditions; plasmon resonance energy transfer; tuberculosis sensing; plasmon-induced photoluminescence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700