Differentiation of Complex Vapor Mixtures Using Versatile DNA鈥揅arbon Nanotube Chemical Sensor Arrays
详细信息    查看全文
文摘
Vapor sensors based on functionalized carbon nanotubes (NTs) have shown great promise, with high sensitivity conferred by the reduced dimensionality and exceptional electronic properties of the NT. Critical challenges in the development of NT-based sensor arrays for chemical detection include the demonstration of reproducible fabrication methods and functionalization schemes that provide high chemical diversity to the resulting sensors. Here, we outline a scalable approach to fabricating arrays of vapor sensors consisting of NT field effect transistors functionalized with single-stranded DNA (DNA-NT). DNA-NT sensors were highly reproducible, with responses that could be described through equilibrium thermodynamics. Target analytes were detected even in large backgrounds of volatile interferents. DNA-NT sensors were able to discriminate between highly similar molecules, including structural isomers and enantiomers. The sensors were also able to detect subtle variations in complex vapors, including mixtures of structural isomers and mixtures of many volatile organic compounds characteristic of humans.

Keywords:

vapor sensor; carbon nanotube; field effect transistor; DNA; electronic nose

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700