Gd(III)-PyMTA Label Is Suitable for In-Cell EPR
详细信息    查看全文
文摘
Distance measurement in the nanometer range by electron paramagnetic resonance spectroscopy (EPR) in combination with site-directed spin labeling is a very powerful tool to monitor the structure and dynamics of biomacromolecules in their natural environment. However, in-cell application is hampered by the short lifetime of the commonly used nitroxide spin labels in the reducing milieu inside a cell. Here, we demonstrate that the Gd(III) based spin label Gd-PyMTA is suitable for in-cell EPR. Gd-PyMTA turned out to be cell compatible and was proven to be inert in in-cell extracts of Xenopus laevis oocytes at 18 掳C for more than 24 h. The proline rich peptide H-AP10CP10CP10-NH2 was site-directedly spin labeled with Gd-PyMTA at both cysteine moieties. The resulting peptide, H-AP10C(Gd-PyMTA)P10C(Gd-PyMTA)P10-NH2, as well as the model compound Gd-spacer-Gd, which consists of a spacer of well-known stiffness, were microinjected into Xenopus laevis oocytes, and the Gd(III)鈥揋d(III) distances were determined by double electron鈥揺lectron resonance (DEER) spectroscopy. To analyze the intracellular peptide conformation, a rotamer library was set up to take the conformational flexibility of the tether between the Gd(III) ion and the C of the cysteine moiety into account. The results suggest that the spin labeled peptide H-AP10C(Gd-PyMTA)P10C(Gd-PyMTA)P10-NH2 is inserted into cell membranes, coinciding with a conformational change of the oligoproline from a PPII into a PPI helix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700