GaP鈥揨nS Pseudobinary Alloy Nanowires
详细信息    查看全文
文摘
Multicomponent nanowires (NWs) are of great interest for integrated nanoscale optoelectronic devices owing to their widely tunable band gaps. In this study, we synthesize a series of (GaP)1鈥?i>x(ZnS)x (0 鈮?x 鈮?1) pseudobinary alloy NWs using the vapor transport method. Compositional tuning results in the phase evolution from the zinc blende (ZB) (x < 0.4) to the wurtzite (WZ) phase (x > 0.7). A coexistence of ZB and WZ phases (x = 0.4鈥?.7) is also observed. In the intermediate phase coexistence range, a core鈥搒hell structure is produced with a composition of x = 0.4 and 0.7 for the core and shell, respectively. The band gap (2.4鈥?.7 eV) increases nonlinearly with increasing x, showing a significant bowing phenomenon. The phase evolution leads to enhanced photoluminescence emission. Strikingly, the photoluminescence spectrum shows a blue-shift (70 meV for x = 0.9) with increasing excitation power, and a wavelength-dependent decay time. Based on the photoluminescence data, we propose a type-II pseudobinary heterojunction band structure for the single-crystalline WZ phase ZnS-rich NWs. The slight incorporation of GaP into the ZnS induces a higher photocurrent and excellent photocurrent stability, which opens up a new strategy for enhancing the performance of photodetectors.

Keywords:

GaPZnS nanowires; quaternary composition tuning; pseudobinary; wurtzite,-zinc blende phase evolution; band gap

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700