SERS-Encoded Nanogapped Plasmonic Nanoparticles: Growth of Metallic Nanoshell by Templating Redox-Active Polymer Brushes
详细信息    查看全文
文摘
We report a new strategy to synthesize core鈥搒hell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core鈥搒hell nanoparticles with integrated optical, electronic, and magnetic properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700