Control of the Crystalline Morphology of Poly(l-lactide) by Addition of High-Melting-Point Poly(l-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes
详细信息    查看全文
文摘
The key to fabricating conductive polymer/carbon nanotube (CNT) nanocomposites is controlling the distribution of CNTs in the polymer matrix. Here, an effective and simple approach for controlling the distribution of multiwalled CNTs (MWCNTs) is reported to largely improve the electrical conductivity of biodegradable poly(l-lactide) (PLLA) through crystalline morphology development by addition of high-melting-point PLLA (hPLLA) crystallites. hPLLA crystallites are efficient nucleating agents, increasing the crystallinity and crystallization rate of PLLA/MWCNT nanocomposites. Furthermore, the diameter of spherulites decreases from 9.7 to 1.0 μm with an increase in the concentration of hPLLA from 0.03 to 3.0 wt %. The electrical conductivity of PLLA/MWCNT nanocomposites with 0.3 wt % MWCNTs greatly increases from 1.89 × 10–15 to 1.56 × 10–8 S/cm with an increase in the matrix crystallinity from 2.4 to 46.8% on introducing trace amounts of hPLLA (0.07 wt %). The percolation threshold of PLLA/MWCNT nanocomposites is reduced from 0.51 to 0.21 wt % on addition of 0.07 wt % hPLLA. The high electrical conductivity and low percolation threshold of PLLA/MWCNT nanocomposites incorporated with hPLLA are related to the high crystallinity and crystalline morphologies of the PLLA matrix. Big spherulites lock a lot of MWCNTs at the intervals in the spherulites, which is harmful to the electrical conductivity. Small spherulites, with large surface areas, also need more MWCNTs to form conductive networks in the amorphous regions. Most MWCNTs that are bundled together to form conductive paths are found in samples with mid-sized spherulites of ∼6.7 μm. More interestingly, the high crystallinity and reconstructed MWCNT network also enhanced the Young modulus, elongation at break, and elastic modulus at high temperature of PLLA/MWCNT nanocomposites with small amounts of hPLLA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700