用户名: 密码: 验证码:
Dinuclear Cadmium(II), Zinc(II), and Manganese(II), Trinuclear Nickel(II), and Pentanuclear Copper(II) Complexes with Novel Macrocyclic and Acyclic Schiff-Base Ligands Having Enantiopure or Racemic Ca
详细信息    查看全文
文摘
Four novel [3 + 3] Schiff-base macrocyclic ligands IIV condensed from 2,6-diformyl-4-substituted phenols (R = CH3 or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C═N double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (16), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl, Br, OAc, and SCN), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 710 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 110, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV−vis, circular dichroism, 1H NMR, and fluorescence spectra have been used to characterize and compare the structural differences between related compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700