Design of Au@ZnO Yolk鈥揝hell Nanospheres with Enhanced Gas Sensing Properties
详细信息    查看全文
文摘
The Au@ZnO yolk鈥搒hell nanospheres with a distinctive core@void@shell configuration have been successfully synthesized by deposition of ZnO on Au@carbon nanospheres. Various techniques were employed for the characterization of the structure and morphology of as-obtained hybrid nanostructures. The results indicated that the Au@ZnO yolk鈥搒hell nanospheres have an average diameter of about 280 nm and the average thickness of the ZnO shell is ca. 40 nm. To demonstrate how such a unique structure might bring about more excellent gas sensing property, we carried out a comparison of the sensing performances of ZnO nanospheres with different inner structures. It was found that Au@ZnO yolk鈥搒hell nanospheres exhibited an obvious improvement in response to acetone compared with the pure ZnO nanospheres with hollow and solid inner structures. For instance, the response of the Au@ZnO nanospheres to 100 ppm acetone was about 37, which was about 2 (3) times higher than that of ZnO hollow (solid) nanostructures. The enhanced sensing properties were attributed to their unique microstructures (porous shell and internal voids) and the catalytic effect of the encapsulated Au nanoparticles.

Keywords:

Au@ZnO nanospheres; carbonaceous template; acetone sensor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700