Adsorption of Copolymers in a Selective Nanoslit: A Hybrid Density Functional Theory
详细信息    查看全文
文摘
A hybrid density functional theory (DFT) is developed for adsorption of copolymers in a selective nanoslit. The DFT incorporates a single-chain simulation for the ideal-gas free energy functional with two weighted density approximations for the residual free energy functional. The theory is found to be insensitive to the width parameter used in the weighted density. Theoretical predictions are in excellent agreement with simulation results in the segment density profiles and the adsorption configurations including tail, loop, and train for copolymers with various sequences over a wide range of surface affinity. The bridge conformation is also observed in multiblock copolymers. Ordered assembly is facilitated in copolymers with longer chain/block and at stronger attraction between segment B and the slit wall. While diblock copolymer shows the longest tail, alternating copolymer has the shortest. As the attraction between segment B and the slit wall increases, the average size and fraction decrease for tail, but increase for loop and train.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700