Thermal Stability and Decomposition Kinetics of 1,3-Dimethyladamantane
详细信息    查看全文
文摘
For a comprehensive understanding of the properties of 1,3-dimethyladamantane (1,3-DMA) as a candidate of high energy-density hydrocarbon fuels, thermal stability of 1,3-DMA under different conditions is investigated. The thermal decomposition kinetics in the batch reactor between 693 and 743 K has been determined, with the rate constants ranging from 4.00 脳 10鈥? s鈥? at 693 K to 35.19 脳 10鈥? s鈥? at 743 K, along with the Arrhenius parameters of A = 2.39 脳 107 s鈥? and activation energy Ea = 183 kJ路mol鈥?. The rate constants for the thermal decomposition of 1,3-DMA are observed to be smaller than those of some typical model fuels, decalin, propylcyclohexane, butylcylohexane, and n-dodecane, demonstrating that the thermal stability of 1,3-DMA is satisfactory. The thermal decomposition of 1,3-DMA in the flowing reactor at temperatures from 873 to 973 K and pressures from 0.1 to 5.0 MPa is further performed. It can be observed that the conversion of 1,3-DMA and the yield of gaseous products increase clearly with the rise of temperature or pressure. The residence time is the main factor for the change of decomposition depth. Methane and hydrogen are the major gaseous products that are produced through demethylation and dehydrogenation. In the liquid residues, toluene and xylene are observed and quantified by GC-MS, HPLC, and NMR as the main aromatics produced. On the basis of component analysis, a hypothetical mechanism of thermal decomposition of 1,3-DMA is proposed to explain the product distribution. It is shown that the different products are mainly obtained through a combination of isomerization, hydrogen transfer, 尾-scission, and dehydrogenation. The results are expected to provide experimental information for the search of new high energy-density hydrocarbon fuels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700