Optical Properties of Colloidal CH3NH3PbBr3 Nanocrystals by Controlled Growth of Lateral Dimension
详细信息    查看全文
文摘
Organometal halide perovskites become important in the photovoltaic and light emitting devices due to the compositional flexibility with AMX3 formula (A is a monovalent organic ammonium cation; M is a metal ion; X is a halogen atom), imposing a significant demand to develop a synthetic route toward new types of nanocrystals. Although chemical pathways for perovskites nanoparticles were developed on the basis of the reprecipitation method, poor control of the nucleation and growth process results in a large size polydispersity that induces the ambiguities associated with a quantum confinement effect depending on their size. Here, a modified reprecipitation method is presented for the synthesis of CH3NH3PbBr3 perovskite nanoparticles with a controlled nanoparticle size by systematically tuning the feed ratio of the precursors. Fine control of the nanocrystal size provides new insights into the quantum confinement effect observed in microscale and nanoscale perovskite materials, where their energy bandgap is associated with the thickness of nanoparticles and invariant to preferential growth in a lateral dimension.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700