Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene
详细信息    查看全文
文摘
Ground-state structures of supported C clusters, CN (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core鈥搒hell structured C21, which is a fraction of C60 possessing three isolated pentagons and C3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core鈥搒hell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters鈥?dimerization explains its temperature-dependent behavior in graphene CVD growth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700