Ion-Pairing Strength in Polyelectrolyte Complexes
详细信息    查看全文
文摘
Polyelectrolyte complexes, PECs, are spontaneously formed blends of polyelectrolytes bearing positive, Pol+, and negative, Pol, repeat units. Many interesting PEC morphologies have been observed, ranging from dense precipitates to liquidlike coacervates to quasi-stable nanoparticles, depending on the identity of the polymers and the preparation conditions. While the number of polyelectrolytes available to synthesize these materials is large and increasing, the corresponding number of Pol+/Pol combinations is vast. This work quantitatively compares the binding strengths between a selection of positive and negative polyelectrolytes by evaluating the extent to which ion pairs between them are broken by a common salt, KBr. Comparison of association constants or Gibbs free energies between different classes of ionic functionality reveals that more “hydrophilic” PECs are more weakly associated, small primary amines bind strongly, carboxylates bind weakly, and aromatic sulfonates interact more strongly than aliphatic ones. The use of “charge density” to predict binding strength is shown not to be justified. Ion diffusion coefficients through PECs also approximately follow water content and are inversely related to interaction strength.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700