Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid
详细信息    查看全文
文摘
Here, we report an efficient and facile method for constructing plasmonic gold nanostructures with controlled morphology on a Si wafer and its use as a surface enhanced Raman scattering (SERS) reporting system for specific detection of HClO. To achieve this substrate, the core gold nanoparticles (AuNPs, 鈭?00 nm) with a monolayer of 4-mercaptoimidazole (MI) ligands were covalently linked to a thiol-derived Si wafer (MI-AuNPs@SH-Si). Taking advantage of the intermolecular NH路路路N hydrogen bond (HB) provided by the neighboring imidazole moiety, multiple satellite AuNPs (鈭?2 nm) decorated with both MI and a Raman reporter are assembled around the core MI-AuNPs at pH 5.0. The uniform morphology of the AuNP-based nanostructures on the Si wafer offer a high density of hot spots with good SERS performance for detecting HClO. The fast oxidation of the imidazole moieties by HClO causes HB destruction and therefore separation of the satellite AuNPs from the core AuNPs, which gives rise to SERS signal damping of the chip that is employed for HClO analysis. This simple and cost-effective method is highly selective for HClO over common interferences and several reactive oxygen/nitrogen species, and enabled rapid analysis at concentrations as low as 1.2 渭mol L鈥?. The present approach is applied to analyze water and human serum samples with satisfactory results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700