Inhibition of U(VI) Reduction by Synthetic and Natural Pyrite
详细信息    查看全文
文摘
Reductive precipitation is an effective method of attenuating the mobility of uranium (U) in subsurface environments. The reduction of U(VI) by synthetic and naturally occurring pyrite was investigated at pH 3.0鈥?.5. In contrast to thermodynamic calculations that were used to predict UO2(s) precipitation, a mixed U(IV) and U(VI) product (e.g., U3O8/U4O9/U3O7) was only observed at pH 6.21鈥?.63 and 4.52鈥?.83 for synthetic and natural pyrite, respectively. Under acidic conditions, the reduction of UO22+ by surface-associated Fe2+ may not be favored because the mineral surface is nearly neutral or not negative enough. At high pH, the sorption of negatively charged U(VI) species is not favored on the negatively charged mineral surface. Thus, the redox reaction is not favored. Trace elements generally contained within the natural pyrite structure can affect the reactivity of pyrite and lead to a different result between the natural and synthetic pyrite. Because UO2(s) is extremely redox-sensitive toward U(VI), the observed UO2+x(s) phase reduction product indicates a surface reaction that is largely controlled by reaction kinetics and pyrite surface chemistry. These factors may explain why most laboratory experiments have observed incomplete U(VI) reduction on Fe(II)-bearing minerals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700