Double Orthogonal Sample Design Scheme and Corresponding Basic Patterns in Two-Dimensional Correlation Spectra for Probing Subtle Spectral Variations Caused by Intermolecular Interactions
详细信息    查看全文
文摘
This paper introduces a new approach named double orthogonal sample design scheme (DOSD) to probe intermolecular interactions based on a framework of two-dimensional (2D) correlated spectroscopy. In this approach, specifically designed concentration series are selected according to the mathematical analysis on orthogonal vectors to generate useful 2D correlated spectra. As a result, the interfering portion can be completely removed from both synchronous and asynchronous spectra, and complementary information concerning intermolecular interactions can be obtained from the set of 2D spectra. A model system, where intermolecular interactions occur between two solutes in a solution, is used to investigate the behavior of 2D correlated spectra generated by using the DOSD approach. Simulation results demonstrate that the resultant spectral patterns can reflect subtle spectral variation in bandwidths, peak positions, and absorptivities brought about by intermolecular interaction, which are hardly visualized in conventional 1D spectra because of the severe band-overlapping problem. The ability to reveal a subtle variation in a characteristic peak in detail by using the DOSD approach provides a new opportunity to understand the nature of intermolecular interactions from a molecular structural point of view. Intermolecular interactions between iodine and benzene in CCl4 solutions were investigated by using the proposed DOSD approach to prove the applicability of the DOSD method in real chemical systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700