Integrative Assessment of Benzene Exposure to Caenorhabditis elegans Using Computational Behavior and Toxicogenomic Analyses
详细信息    查看全文
文摘
In this study, we investigated the toxic effects of benzene to the nematode Caenorhabditis elegans in an integrative manner, using computational behavior and toxicogenomics analyses, along with survival and reproduction. Benzene exposure led to changes in locomotive behavior and reproduction decline in C. elegans. Microarray followed by pathway analysis revealed that 228 genes were differentially expressed by benzene exposure, and cyp-35a2, pmk-1, and cep-1 were selected for further reproduction and multiparametric behavior analysis. Mutant analysis showed that benzene induced reproduction decline was rescued in cyp-35a2(gk317) mutant, whereas it was significantly exacerbated in pmk-1(km25) mutant, compared with the wildtype. The multiparametric behavior analysis on the mutants of selected genes revealed that each strain exhibits different response patterns, particularly, enhanced linear movement in the cyp-35a2(gk317) mutant, whereas the changes in partial body movement were observed in the pmk-1(km25) mutant by benzene exposure. A self-organizing map revealed that the pmk-1(km25) mutant group was the most densely clustered and located on the opposite side of the map of the cyp-35a2(gk317) mutant, each crossing that of the wildtype. Overall results suggest distinct roles of cyp-35a2 and pmk-1 genes in benzene-induced alterations in behavior and reproduction in C. elegans. This study also suggests computational behavior analysis is a suitable tool for addressing the integrative impact of chemical stress alongside with toxicogenomic approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700