First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries
详细信息    查看全文
文摘
Li/O2 battery has the highest theoretical energy density among any battery systems reported to date. However, its poor cycle life and unacceptable energy efficiency from a high charging overpotential have been major limitations. Recently, much higher energy efficiency with low overpotential was reported for a new metal/oxygen system, Na/O2 battery. This finding was unexpected since the general battery mechanism of the Na/O2 system was assumed to be analogous to that of the Li/O2 cell. Furthermore, it implies that fundamentally different kinetics are at work in the two systems. Here, we investigated the reaction mechanisms in the Na/O2 cell using first-principles calculations. In comparative study with the Li/O2 cell, we constructed the phase stability maps of the reaction products of Na/O2 and Li/O2 batteries based on the oxygen partial pressure, which explained why certain phases should be the main discharge products under different operating conditions. From surface calculations of NaO2, Na2O2, and Li2O2 during the oxygen evolution reaction, we also found that the minimum energy barrier for the NaO2 decomposition was substantially lower than that of Li2O2 decomposition on major surfaces providing a hint for low charging overpotential of Na/O2 battery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700