Real-Time Surface-Enhanced Raman Spectroscopy Monitoring of Surface pH during Electrochemical Melting of Double-Stranded DNA
详细信息    查看全文
文摘
The application of a negative potential ramp at a double-stranded DNA (dsDNA) functionalized electrode surface results in the gradual denaturation of the DNA in a process known as electrochemical melting. The underlying physical chemistry behind electrochemically driven DNA denaturation is not well understood, and one possible mechanism is a change in local pH at the electrode surface. We demonstrate that by coimmobilization of p-mercaptobenozic acid at a dsDNA-functionalized electrode surface, it is possible to monitor both DNA denaturation and the local pH simultaneously using surface-enhanced Raman spectroscopy. We find that the local pH at the electrode surface does not change as the applied potential is scanned negative and the dsDNA denatures. We therefore conclude that in these experiments electrochemical melting is not caused by electrochemically driven local pH changes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700