Antisymmetric Couplings Enable Direct Observation of Chirality in Nuclear Magnetic Resonance Spectroscopy
详细信息    查看全文
文摘
Here we demonstrate that a term in the nuclear spin Hamiltonian, the antisymmetric J-coupling, is fundamentally connected to molecular chirality. We propose and simulate a nuclear magnetic resonance (NMR) experiment to observe this interaction and differentiate between enantiomers without adding any additional chiral agent to the sample. The antisymmetric J-coupling may be observed in the presence of molecular orientation by an external electric field. The opposite parity of the antisymmetric coupling tensor and the molecular electric dipole moment yields a sign change of the observed coupling between enantiomers. We show how this sign change influences the phase of the NMR spectrum and may be used to discriminate between enantiomers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700