Kinetic and Mechanistic Insights into the All-Solid-State Z-Schematic System
详细信息    查看全文
文摘
An all-solid-state Z-schematic system, CdS/Au/TiO1.96C0.04, has been reported for the efficient H2 generation from water under visible-light irradiation. However, a kinetic and mechanistic study of the directional charge transfer at the interfaces has not been done. In this study, electron pathways were constructed on the basis of steady-state photoluminescence (PL) spectral data, and the rate constants for charge transfer were calculated from time-resolved PL spectra. The PL results revealed that Au core played an important role in capturing the photoexcited electrons in the conduction band (CB) of TiO1.96C0.04 and accelerating the electron transfer to the valence band (VB) of CdS, leading to an efficient quenching of the holes left in the VB of CdS shell. The minimum energy pathways for H2 production on the surfaces of TiO1.96C0.04(101) and CdS(101) were elucidated through first-principles calculations, indicating that the CdS shell has a lower energy barrier (2.81 eV) for the surface reaction than that (3.34 eV) of TiO1.96C0.04. Consequently, CdS/Au/TiO1.96C0.04 showed a vectorial electron transfer of TiO1.96C0.04 鈫?Au 鈫?CdS in the form of the letter Z, which allowed the photoexcited electrons to be shuttled to a higher energy level, thereby producing a substantial level of H2 on the CdS(101) surface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700