One-Pot Synthesis of Intermetallic Electrocatalysts in Ordered, Large-Pore Mesoporous Carbon/Silica toward Formic Acid Oxidation
详细信息    查看全文
文摘
This study describes the one-pot synthesis and single-cell characterization of ordered, large-pore (>30 nm) mesoporous carbon/silica (OMCS) composites with well-dispersed intermetallic PtPb nanoparticles on pore wall surfaces as anode catalysts for direct formic acid fuel cells (DFAFCs). Lab-synthesized amphiphilic diblock copolymers coassemble hydrophobic metal precursors as well as hydrophilic carbon and silica precursors. The final materials have a two-dimensional hexagonal-type structure. Uniform and large pores, in which intermetallic PtPb nanocrystals are significantly smaller than the pore size and highly dispersed, enable pore backfilling with ionomers and formation of the desired triple-phase boundary in single cells. The materials show more than 10 times higher mass activity and significantly lower onset potential for formic acid oxidation as compared with commercial Pt/C, as well as high stability due to better resistivity toward CO poisoning. In single cells, the maximum power density was higher than that of commercial Pt/C, and the stability highly improved, compared with commercial Pd/C. The results suggest that PtPb-based catalysts on large-pore OMCSs may be practically applied as real fuel cell catalysts for DFAFC.

Keywords:

block copolymer; self-assembly; mesoporous structure; intermetallic nanoparticles; formic acid fuel cell

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700