Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads
详细信息    查看全文
文摘
Achieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle β-pyrrole (3- or 13-) or meso (15-) positions. The strong electronic communication between constituent chromophores is indicated by the doubling of prominent absorption features, split redox waves, and paired linear combinations of frontier molecular orbitals. Relative to the benchmarks, the chlorin dyads in toluene show substantial bathochromic shifts of the long-wavelength absorption band (17–31 nm), modestly reduced singlet excited-state lifetimes (τS = 3.6–6.2 ns vs 8.8–12.3 ns), and increased fluorescence quantum yields (Φf = 0.37–0.57 vs 0.34–0.39). The bacteriochlorin dyads in toluene show significant bathochromic shifts (25–57 nm) and modestly reduced τS (1.6–3.4 ns vs 3.5–5.3 ns) and Φf (0.09–0.19 vs 0.17–0.21) values. The τS and Φf values for the bacteriochlorin dyads are reduced substantially (up to ~20-fold) in benzonitrile. The quenching is due primarily to the increased S1 → S0 internal conversion that is likely induced by increased contribution of charge-resonance configurations to the S1 excited state in the polar medium. The fundamental insights gained into the physicochemical properties of the strongly coupled hydroporphyrin dyads may aid their utilization in solar-energy conversion and photomedicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700