Single Cell Real-Time miRNAs Sensing Based on Nanomotors
详细信息    查看全文
文摘
A nanomotor-based strategy for rapid single-step intracellular biosensing of a target miRNA, expressed in intact cancer cells, at the single cell level is described. The new concept relies on the use of ultrasound (US) propelled dye-labeled single-stranded DNA (ssDNA)/graphene-oxide (GO) coated gold nanowires (AuNWs) capable of penetrating intact cancer cells. Once the nanomotor is internalized into the cell, the quenched fluorescence signal (produced by the 蟺鈥撓€ interaction between GO and a dye-labeled ssDNA) is recovered due to the displacement of the dye-ssDNA probe from the motor GO-quenching surface upon binding with the target miRNA-21, leading to an attractive intracellular 鈥淥FF-ON鈥?fluorescence switching. The faster internalization process of the US-powered nanomotors and their rapid movement into the cells increase the likelihood of probe鈥搕arget contacts, leading to a highly efficient and rapid hybridization. The ability of the nanomotor-based method to screen cancer cells based on the endogenous content of the target miRNA has been demonstrated by measuring the fluorescence signal in two types of cancer cells (MCF-7 and HeLa) with significantly different miRNA-21 expression levels. This single-step, motor-based miRNAs sensing approach enables rapid 鈥渙n the move鈥?specific detection of the target miRNA-21, even in single cells with an extremely low endogenous miRNA-21 content, allowing precise and real-time monitoring of intracellular miRNA expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700