Predictable Tuning of Absorption Properties in Modular Aromatic Donor鈥揂cceptor Liquid Crystals
详细信息    查看全文
文摘
This paper demonstrates a combinatorial design strategy in the generation of columnar liquid crystalline materials with tailored properties based on the molar (1:1) combination of complementary electron-rich and electron-poor aromatic components. Through the iterative study of relationships of individual component structure to combined material properties, a series of aromatic donor鈥揳cceptor columnar liquid crystal materials was developed whose charge-transfer absorption completely spans the visible spectrum. The red-onset of absorption in these materials is shown to correlate closely with straightforward orbital energy level calculations (density functional theory) of individual component molecules. This holds equally true regardless of the component or range of absorption characteristics exhibited by the molecules of this study. Charge-transfer band extinction coefficients are substantial in these materials, ranging from 3800鈥?5500 M鈥?; the magnitude of which is shown to correlate to component identity. This ability to predictably design a range of functional material properties through preceding calculations, and achieving a tailored diversity of properties through combination of relatively simple component molecules, provides an impressive array of new materials and exemplifies this as a powerful strategy for efficient, targeted material design.

Keywords:

columnar liquid crystals; donor鈭抋cceptor; charge-transfer; modular materials; tunable absorption

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700