Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition-Metal Chelates
详细信息    查看全文
  • 作者:Jeff C. Joyner ; Lalintip Hocharoen ; J. A. Cowan
  • 刊名:The Journal of the American Chemical Society
  • 出版年:2012
  • 出版时间:February 22, 2012
  • 年:2012
  • 卷:134
  • 期:7
  • 页码:3396-3410
  • 全文大小:532K
  • 年卷期:v.134,no.7(February 22, 2012)
  • ISSN:1520-5126
文摘
A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate鈥搇isinopril (EDTA鈥搇isinopril, NTA鈥搇isinopril, DOTA鈥搇isinopril, and GGH鈥搇isinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate鈥搇isinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate鈥搇isinopril complexes revealed IC50 values ranging from 44 to 4500 nM for Ni鈥揘TA鈥搇isinopril and Ni鈥揇OTA鈥搇isinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate鈥搇isinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150鈥?00 M鈥? min鈥? (Cu鈥揋GH鈥搇isinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal chelate鈥搇isinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700