Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer
详细信息    查看全文
  • 作者:Jungwook Choi ; Hanyu Zhang ; Jong Hyun Choi
  • 刊名:ACS Nano
  • 出版年:2016
  • 出版时间:January 26, 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:1671-1680
  • 全文大小:616K
  • ISSN:1936-086X
文摘
Atomically thin transition metal dichalcogenides (TMDCs) have attracted great interest as a new class of two-dimensional (2D) direct band gap semiconducting materials. The controllable modulation of optical and electrical properties of TMDCs is of fundamental importance to enable a wide range of future optoelectronic devices. Here we demonstrate a modulation of the optoelectronic properties of 2D TMDCs, including MoS2, MoSe2, and WSe2, by interfacing them with two metal-centered phthalocyanine (MPc) molecules: nickel Pc (NiPc) and magnesium Pc (MgPc). We show that the photoluminescence (PL) emission can be selectively and reversibly engineered through energetically favorable electron transfer from photoexcited TMDCs to MPcs. NiPc molecules, whose reduction potential is positioned below the conduction band minima (CBM) of monolayer MoSe2 and WSe2, but is higher than that of MoS2, quench the PL signatures of MoSe2 and WSe2, but not MoS2. Similarly, MgPc quenches only WSe2, as its reduction potential is situated below the CBM of WSe2, but above those of MoS2 and MoSe2. The quenched PL emission can be fully recovered when MPc molecules are removed from the TMDC surfaces, which may be refunctionalized and recycled multiple times. We also find that photocurrents from TMDCs, probed by photoconductive atomic force microscopy, increase over 2-fold only when the PL is quenched by MPcs, further supporting the photoinduced charge transfer mechanism. Our results should benefit design strategies for 2D inorganic–organic optoelectronic devices and systems with tunable properties and improved performances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700