Boosting the Boron Dopant Level in Monolayer Doping by Carboranes
详细信息    查看全文
文摘
Monolayer doping (MLD) presents an alternative method to achieve silicon doping without causing crystal damage, and it has the capability of ultrashallow doping and the doping of nonplanar surfaces. MLD utilizes dopant-containing alkene molecules that form a monolayer on the silicon surface using the well-established hydrosilylation process. Here, we demonstrate that MLD can be extended to high doping levels by designing alkenes with a high content of dopant atoms. Concretely, carborane derivatives, which have 10 B atoms per molecule, were functionalized with an alkene group. MLD using a monolayer of such a derivative yielded up to ten times higher doping levels, as measured by X-ray photoelectron spectroscopy and dynamic secondary mass spectroscopy, compared to an alkene with a single B atom. Sheet resistance measurements showed comparably increased conductivities of the Si substrates. Thermal budget analyses indicate that the doping level can be further optimized by changing the annealing conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700