Characterization of a Tricationic Trigonal Bipyramidal Iron(IV) Cyanide Complex, with a Very High Reduction Potential, and Its Iron(II) and Iron(III) Congeners
详细信息    查看全文
文摘
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [FeIV(O)(TMG3tren)]2+ (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG3tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [FeIV(CN)(TMG3tren)]3+ (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [FeII(CN)(TMG3tren)]+ (2), via the S = 5/2 complex [FeIII(CN)(TMG3tren)]2+ (3), the progress of which was conveniently monitored by using UV鈭抳is spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), M枚ssbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an FeIV/III reduction potential of 1.4 V vs Fc+/o, the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t1/2 in CD3CN solution containing 0.1 M KPF6 at 25 掳C 鈮?15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to 13C NMR at 鈭?0 掳C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG3tren ligand to support highly charged high-valent complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700