Probing Conformational Variations at the ATPase Site of the RNA Helicase DbpA by High-Field Electron鈥揘uclear Double Resonance Spectroscopy
详细信息    查看全文
文摘
The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron鈥搉uclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein鈥檚 ATPase site in solution. Specifically, we substituted the essential Mg2+ cofactor in the ATPase active site for paramagnetic Mn2+ and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATP纬S and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn2+ interactions with the nucleotide phosphates through the 31P hyperfine couplings and the coordination by protein residues through 13C hyperfine coupling from 13C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the 13C and the 31P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn2+ ion induced by the hydrolysis. More specifically, ATP纬S was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn2+ cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein鈥檚 ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn2+ ion. Finally, a competitive Mn2+ binding site was found for single-stranded RNA construct.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700