Faraday Rotation in Graphene Quantum Dots: Interplay of Size, Perimeter Type, and Functionalization
详细信息    查看全文
  • 作者:Jarkko V盲h盲kangas ; Perttu Lantto ; Juha Vaara
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2014
  • 出版时间:October 16, 2014
  • 年:2014
  • 卷:118
  • 期:41
  • 页码:23996-24005
  • 全文大小:658K
  • ISSN:1932-7455
文摘
Nanometer-sized graphene systems have optical properties that can be tuned in the visible range to enable new optoelectronic device applications. For such purposes it is of critical importance to fundamentally understand the behavior that is specific for the size, shape, and composition of the system. Recently, graphene has gained attention due to its capability to rotate the plane of polarization of linearly polarized light up to 6 degrees at 7 T magnetic field, which is a massive rotation for a single sheet of atoms. We present a computational study that contributes to understanding of this Faraday optical rotation (FOR) for graphene quantum dots (GQDs) of different size, perimeter structure, and composition. Based on first-principles calculations we predict FOR characterized by the Verdet constant, for a systematically growing series of hexagonal GQDs in the visible frequency range. We show evidence for the independence of FOR of the type of the perimeter, zigzag or armchair, in these hexagonal GQDs. In addition, we show how FOR is drastically changed at different levels of hydrogenation, leading to complete or partial sp3 hybridization of the GQD. While FOR is a global property for a particular molecular system, the recently proposed technique based on optical rotation by polarized nuclear spins (nuclear spin optical rotation, NSOR) characterizes the system with atomic resolution. Here we demonstrate the capability of NSOR to distinguish between GQDs of specific size and edge structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700