Impact of Diradical Spin State (Singlet vs Triplet) and Structure (Puckered vs Planar) on the Photodenitrogenation Stereoselectivity of 2,3-Diazabicyclo[2.2.1]heptanes
详细信息    查看全文
文摘
Versatile transformations of azo compounds are utilized not only in synthetic organic chemistry but also in materials science. In this study, a hitherto unknown stereoselectivity was observed by low-temperature in situ NMR spectroscopy for the photochemical denitrogenation of a cyclic azoalkane (2,3-diazabicyclo[2.2.1]heptane) derivative. Direct (singlet) photodenitrogenation at 188 K afforded two products, the configurationally retained ring-closed compound (ret-CP) and the inverted compound (inv-CP), in a ratio of 82/18 (±3) (ret-CP/inv-CP), with an overall yield of >95%. Triplet-sensitized denitrogenation at 199 K using benzophenone (3BP*) or xanthone (3Xan*) selectively produced inv-CP, with a ret-CP/inv-CP ratio of 7/93 (±3). Thermal isomerization of inv-CP into ret-CP was observed by low-temperature NMR spectroscopy. Transient absorption spectroscopy revealed that two distinct singlet diradicals are involved in the formation of CP during direct photodenitrogenation, that is, puckered puc-1DR and planar pl-1DR diradicals. The former produces ret-CP, whereas the latter affords inv-CP. Kinetic analysis using the integrated profiles method was used to determine the molecular absorption coefficient of pl-1DR560 = 4900 ± 250 M–1 cm–1) for the first time. The involvement of the puckered singlet diradical resolves the mechanistic puzzle of stereoselective denitrogenation of diazabicycloheptane-type azoalkanes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700