Detection of Charge Storage on Molecular Thin Films of Tris(8-hydroxyquinoline) Aluminum (Alq3) by Kelvin Force Microscopy: A Candidate System for High Storage Capacity Memory Cells
详细信息    查看全文
文摘
Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq3) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq3 films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq3 films, even for high hole and electron densities of >1012 cm鈥?. We show that this finding is consistent with the very low mobility of charge carriers in Alq3 thin films (<10鈥? cm2/(Vs)) and that it can benefit from the use of Alq3 films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq3 molecules as the floating gate are fabricated and measured, showing durability over more than 104 program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 脳 1013 cm鈥?. These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells.

Keywords:

Flash memory; charge storage; molecules; organic; nonvolatile; Kelvin force microscopy; Alq3; tris(8-hydroxyquinoline) aluminum

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700