Oxygen Adsorption on the Fe(110) Surface: The Old System ‿New Structures
详细信息    查看全文
文摘
Adsorption of oxygen on the (110) surface of epitaxial iron films on tungsten (110) was studied using low-energy electron diffraction (LEED), low-energy electron microscopy (LEEM), and Auger electron spectroscopy within an exposure range of 0–300 Langmuir (L). Selected oxygen adsorption structures on Fe(110) reported in the literature were critically compared and revised in reference to the present study. The initial adsorption of 1/4 oxygen monolayer resulting in the commonly observed (2 × 2) structure was followed by a structure that was frequently termed as (3 × 1). Its complex LEED pattern was ultimately resolved and interpreted as originating from two structural domains of a large oblique unit cell (eight times larger than the substrate unit cell) and 3/8 oxygen coverage. A new (3 × 2) structure was identified at a coverage of 2/3. The domain interpretation of last two structures was verified by LEEM and confirmed by density functional theory calculations. The onset of oxygen–iron bonding formation was recognized by the change in the symmetry of the LEED pattern and the shape of the iron AES signal. Finally, the formation of an iron oxide FeO(111) monolayer was evidenced at the oxygen exposure of ∼300 L.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700