Enclathration of X@La4 Tetrahedra in Channels of Zn–P Frameworks in La3Zn4P6X (X = Cl, Br)
详细信息    查看全文
文摘
Two new quaternary lanthanum zinc phosphide-halides were synthesized via high-temperature solid-state reactions. Their complex crystal structures were determined by a combination of X-ray diffraction and advanced solid-state 31P NMR spectroscopy. La3Zn4P6Cl and La3Zn4P6.6Br0.8 share a common structural feature: a polyanionic Zn–P framework with large channels hosting complex one-dimensional cations. The cations are built from X@La4 tetrahedral chains with X = Cl (La3Zn4P6Cl) or Br0.8P0.2 (La3Zn4P6.6Br0.8). The X@La4 tetrahedra share two vertices forming one-dimensional chains. To accommodate larger bromine-containing cations the Zn–P framework is rearranged by breaking and forming several Zn–P and P–P bonds. This results in the formation of a unique [P3]3– cycle, which is isoelectronic to cyclopropane. Analysis of the electron localization and orbital overlaps confirmed the presence of different chemical bonding in the Zn–P networks in the Cl- and Br-containing compounds. La3Zn4P6Cl was predicted to be a narrow bandgap semiconductor, while the formation of the [P3]3– units in the structure of La3Zn4P6.6Br0.8 was shown to lead to a narrowing of the bandgap. Characterization of the transport properties confirmed both La3Zn4P6Cl and La3Zn4P6.6Br0.8 to be narrow bandgap semiconductors with electrons as dominating charge carriers at low temperatures. La3Zn4P6Cl exhibits a n-p transition around 250 K. Due to the complex crystal structure and segregation of the areas of different chemical bonding, both title compounds exhibit ultralow thermal conductivities of 0.7 Wm–1 K–1 and 1.5 Wm–1 K–1 at 400 K for La3Zn4P6Cl and La3Zn4P6.6Br0.8, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700