Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides
详细信息    查看全文
文摘
Functional supramolecular systems like carbonyl-bridged triarylamine (CBT) trisamides are known for their long-range energy transport at room temperature. Understanding the complex self-assembly processes of this system allows for control over generated structures using controlled supramolecular polymerization. Here, we present two novel CBT trisamides with (S)- or (R)-chiral side chains which show a two-pathway self-assembly behavior in solution. Depending on the thermal profile during the self-assembly process, two different stable states are obtained under otherwise identical conditions. A kinetically trapped state A is reached upon cooling to 7 °C, via a proposed isodesmic process. In addition, there is a thermodynamically stable state B at 7 °C that is induced by first undercooling to −5 °C, via a nucleation-elongation mechanism. In both cases, helical supramolecular aggregates comprising H-aggregated CBTs are formed. Additionally, controlled supramolecular polymerization was achieved by mixing the two different states (A and B) from the same enantiomer, leading to a conversion of the kinetically trapped state to the thermodynamically stable state. This process is highly enantioselective, as no conversion is observed if the two states consist of opposite enantiomers. We thus show the importance and opportunities emerging from understanding the pathway complexity of functional supramolecular systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700