q-GRID: A New Method To Calculate Lattice and Interaction Energies for Molecular Crystals from Electron Densities
详细信息    查看全文
文摘
We present a new method to calculate lattice and intermolecular interaction energies for molecular crystals from electron densities obtained within the crystalline environment: q-GRID. The electron density is partitioned over a grid, and each grid point is assigned to a specific molecule. Intermolecular interaction energies are calculated as a sum of Coulomb interactions between grid points and nuclei of pairs of molecules and analytical dispersion and repulsion contributions. An advantage of this method is that the interactions within a molecule are automatically excluded. After a description of the new method and the computational setup, three test cases representing different classes of molecular crystals are presented: anthracene, isonicotinamide, and dl-methionine. For the polymorphic compounds, q-GRID is able to obtain the correct ranking of the polymorphic stability. Calculated lattice energies, as a sum of intermolecular interactions, are in good agreement with sublimation enthalpies. The code of q-GRID is made publicly available.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700