Pulsed-Field Gradient NMR Spectroscopic Studies of Alcohols in Supported Gold Catalysts
详细信息    查看全文
文摘
We report a pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopic study of the effective diffusivity of alcohols in catalysts comprising gold supported on silica, titania and ceria and gold鈭抪alladium alloy nanoparticles supported on titania. These catalysts are shown to be highly active for the selective oxidation of alcohols. However, we observe that molecules possessing hydroxyl functional groups in the 2-position exhibit very low reactivities. To help understand the nature of conversion and selectivity, we observe from traditional catalytic measurements involving gas chromatography of the reaction mixtures, we have studied the effective self-diffusivities, Deff, of 1-, 2-, and 3-octanols and 1,2- and 1,4-butanediols in Au鈭抍eria, Au鈭抯ilica, Au鈭抰itania, and Au鈭扨d鈭抰itania using PFG-NMR spectroscopy. The results show that the octanols diffuse approximately 35% slower on silica supports than on titania. In addition, a marked two-component diffusive behavior is seen for ceria-supported catalysts with the dominant component, for 1-, 2-, and 3-octanols, being close to that of the free bulk liquid, and the slower component being an order of magnitude slower. The values of the 1,2- and 1,4-butanediol self-diffusion coefficients for silica-based gold catalysts are closer to those of the bulk liquid 1,2- and 1,4-butanediols. Au鈭扨d鈭抰itania also showed reduced self-diffusivities when compared with the bulk liquids but were similar to their monometallic counterparts. A new parameter, 尉, the PFG-NMR interaction parameter, is introduced and is defined as the ratio of free liquid diffusivity to effective liquid diffusivity within the porous medium and accounts, collectively, for the functional group interaction of the probe molecule with itself and the porous medium. This parameter, along with reference tortuosity values determined by PFG-NMR gives new insight into the dynamics of hydrogen-bonded networks of different functional groups that exist within the porous catalyst matrix. The inhibition effect observed from traditional catalytic activity studies for the oxidation of 2-octanol is considered to result from competitive adsorption of the ketone product.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700