Bifunctional Coating with Sustained Release of 4-Amide-piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone
详细信息    查看全文
  • 作者:Rong Wang ; Kim Lee Chua ; Koon Gee Neoh
  • 刊名:ACS Biomaterials Science & Engineering
  • 出版年:2015
  • 出版时间:June 8, 2015
  • 年:2015
  • 卷:1
  • 期:6
  • 页码:405-415
  • 全文大小:640K
  • ISSN:2373-9878
文摘
Bacterial colonization by nosocomial pathogens on medical device surface can cause serious and life-threatening infections. We showed that 4-amide-piperidine-C12 (4AP12), the base form of 4-dodecaneamidepiperidine HCl, has broad-spectrum antimicrobial activity against both Gram-negative and Gram-positive bacteria and fungi. Resistance assay confirmed that prolonged exposure of bacteria to subinhibitory concentrations of 4AP12 did not induce resistance to 4AP12. The possible antimicrobial mechanism of 4AP12 was investigated, and attributed to the disruption of the cell membrane of microorganisms and subsequent cell lysis. The hydrophobic 4AP12 was incorporated in Pluronic F127 diacrylate (F127DA) micelles, which were then graft-copolymerized with acrylic acid and cross-linked onto ozonized silicone surface. Sulfobetaine methacrylate and F127DA were then graft-copolymerized as an antifouling layer on top of the F127DA-AA hydrogel containing the 4AP12, thus forming a microscale two-layer bifunctional coating. Sustained release of 4AP12 at a rate of up to 1 μg/day per cm2 of hydrogel-coated silicone surface was achieved and this was sufficient to inhibit ∼97% of bacterial colonization by Acinetobacter baumannii in artificial urine medium under static condition over a 14-day period. Bacterial colonization by Escherichia coli and Pseudomonas aeruginosa under similar conditions was also significantly reduced. In addition, after 96 h exposure to flowing artificial urine (0.7 mL/min), Escherichia coli colonization on the 4AP12-loaded hydrogel-coated surface was reduced by ∼89% compared to the pristine surface. The concentration of 4AP12 that was released and was effective in inhibiting bacterial colonization did not result in significant cytotoxicity to human epithelial cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700