Tuning Energy Level Alignment At Organic/Semiconductor Interfaces Using a Built-In Dipole in Chromophore鈥揃ridge鈥揂nchor Compounds
详细信息    查看全文
文摘
A chromophore鈥揵ridge鈥揳nchor molecular architecture is used to manipulate the molecular level energy position, with respect to the band edges of the substrate, of a chromophore bound to a surface via an anchor group. An energy shift of the chromophore鈥檚 frontier orbitals is induced by the addition of an oriented molecular dipole into the bridge part of the compound. This principle has been tested using three Zinc Tetraphenylporphyrin derivatives of comparable structure: two of which possess a dipole, but pointing in opposite directions and, for comparison, a compound without a dipole. UV鈥搗is absorption and emission spectroscopies have been used to probe the electronic structure of the compounds in solution, while UV photoemission spectroscopy has been used to measure the relative position of the molecular levels of the chromophore with respect to the band edges of a ZnO(11鈥?0) single crystal substrate. It is shown that the introduction of a molecular dipole does not alter the chromophore鈥檚 HOMO鈥揕UMO gap, and that the molecular level alignment of the compounds bound to the ZnO surface follows the behavior predicted by a simple parallel-plate capacitor model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700