Anion-Binding Properties of a Cyclic Pseudohexapeptide Containing 1,5-Disubstituted 1,2,3-Triazole Subunits
详细信息    查看全文
  • 作者:Martin R. Krause ; Richard Goddard ; Stefan Kubik
  • 刊名:Journal of Organic Chemistry
  • 出版年:2011
  • 出版时间:September 2, 2011
  • 年:2011
  • 卷:76
  • 期:17
  • 页码:7084-7095
  • 全文大小:1072K
  • 年卷期:v.76,no.17(September 2, 2011)
  • ISSN:1520-6904
文摘
A C3 symmetric cyclic pseudohexapeptide containing 2-aminopicoline-derived subunits and 1,5-disubstituted 1,2,3-triazole rings is introduced as a potent anion receptor. This macrocycle was designed to mimic both the conformation and the receptor properties of a previously described cyclic hexapeptide containing alternating an class="smallcaps">lan>-proline and 6-aminopicolinic acid subunits. Conformational analyses demonstrate that the cyclic peptide and the cyclic pseudopeptide are structurally closely related. Most importantly, both exhibit a converging arrangement of the NH groups, hence a good preorganization for anion binding. As a consequence, the pseudopeptide also very efficiently interacts with halide and sulfate ions, and this is the case even in competitive aqueous solvent mixtures. However, there are clear differences in the structures of both compounds, which translate into characteristic differences in receptor properties. Specifically, (i) the pseudopeptide possesses an anion affinity intrinsically higher than that of the cyclopeptide, (ii) the pseudopeptide is well preorganized for anion binding in a wider range of solvents from aprotic to protic, (iii) anion affinity in aprotic solvents is very high and associated with complexation equilibria that are slow on the NMR time-scale, (iv) the propensity of the pseudopeptide to form sandwich-type 2:1 complexes with two receptor molecules surrounding one anion is significantly lower than that of the cyclopeptide. A solvent-dependent calorimetric characterization of the binding equilibria of both compounds provided clear evidence for the stabilizing effect of hydrophobic interactions between the receptor subunits in such 2:1 complexes. The pseudopeptide thus represents the first member of a new family of anion receptors whose properties may be fine-tuned by varying the side chains in the periphery of the cavity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700