Biopolymer Interactions, Water Dynamics, and Bread Crumb Firming
详细信息    查看全文
文摘
To establish the relationship between biopolymer interactions, water dynamics, and crumb texture evolution in time, proton mobilities in starch and gluten model systems and bread were investigated with NMR relaxometry. Amylopectin recrystallization was observed as an increased amount of fast-relaxing protons, while network strengthening and changes in water levels were noted as a reduced mobility and amount, respectively, of slowly relaxing protons. Amylopectin recrystallization strengthened the starch network with concomitant inclusion of water and increased crumb firmness, especially at the beginning of storage. The inclusion of water and the thermodynamic immiscibility of starch and gluten resulted in local gluten dehydration during bread storage. Moisture migration from crumb to crust further reduced the level of plasticizing water of the biopolymer networks and contributed to crumb firmness at longer storage times. Finally, we noted a negative relationship between the mobility of slowly relaxing protons of crumb polymers and crumb firmness.

Keywords:

low-resolution proton nuclear magnetic resonance; proton mobility; amylopectin retrogradation; gluten hydration; water diffusion; bread firming

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700