Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors
详细信息    查看全文
  • 作者:Andrej Junginger ; Rigoberto Hernandez
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2016
  • 出版时间:March 3, 2016
  • 年:2016
  • 卷:120
  • 期:8
  • 页码:1720-1725
  • 全文大小:456K
  • ISSN:1520-5207
文摘
Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700